Wednesday 6 June 2012, 1430
IDSIA meeting room, Galleria 1, Manno
Martino Bertoni, D.I.S.Co, University of Milano-Bicocca, Italy
GeNet: A Graph-Based Genetic Programming Framework for the Reverse Engineering of Gene
Regulatory Networks.
A standard tree-based genetic programming system, called GRNGen, for the reverse
engineering of gene regulatory networks starting from time series datasets, was proposed
in EvoBIO 2011. Despite the interesting results obtained on the simple IRMA network,
GRNGen has some important limitations. For instance, in order to reconstruct a network
with GRNGen, one single regression problem has to be solved by GP for each gene. This
entails a clear limitation on the size of the networks that it can reconstruct, and this
limitation is crucial, given that real genetic networks generally contain large numbers of
genes. In this paper we present a new system, called GeNet, which aims at overcoming the
main limitations of GRNGen, by directly evolving entire networks using graph-based genetic
programming. We show that GeNet finds results that are comparable, and in some cases even
better, than GRNGen on the small IRMA network, but, even more importantly (and contrarily
to GRNGen), it can be applied also to larger networks. Last but not least, we show that
the time series datasets found in literature do not contain a sufficient amount of
information to describe the IRMA network in detail.
---
Prof Roberto Montemanni
Dalle Molle Institute for Artificial Intelligence (IDSIA)
University of Applied Sciences of Southern Switzerland (SUPSI)
Galleria 2, CH-6928 Manno, Switzerland
Tel +41 91 58 666 666 7
Fax +41 91 58 666 666 1
Email: roberto(a)idsia.ch
URL:
http://www.idsia.ch/~roberto/