The talk will take place in room 204 at 12:30 and will last about 30
minutes. Those interested to join us for lunch later will be welcome, but
there will not be free pizzas this time. :)
*Title:
3D Lung Cancer Segmentation and Representation Learning for Few-Shot
Classification
*Abstract:
The recent advances in Deep Learning made many tasks in Computer Vision
much easier to tackle. However, working with a small amount of data, and
highly imbalanced real-world datasets can still be very challenging. In
this talk, I will present two of my recent projects, where modelling and
training occur under those circumstances. Firstly, I will introduce a novel
3D UNet-like model for fast volumetric segmentation of lung cancer nodules
in Computed Tomography (CT) imagery. This model highly relied on kernel
factorisation and other architectural improvements to reduce the number of
parameters and computational load, allowing its successful use in
production. Secondly, I will discuss the use of representation learning or
similarity metric learning for few-shot classification tasks, and more
specifically its use in a competition at NeurIPS 2019 and Kaggle. This
competition aimed to detect the effects of over 1000 different genetic
treatments to 4 types of human cells, and published a dataset composed of
6-channel fluorescent microscopy images with only a handful of samples per
target class.
*Speaker:
Henrique Mendonça got a MSc at the University of Zurich in 2015 and has 10+
years experience in designing and developing systems in areas from
real-time embedded systems to high performance distributed applications,
computer vision and machine learning.
Show replies by date